La matematica della democrazia. Voti, seggi e parlamenti da Platone ai giorni nostri

calcActive())">
- ISBN/EAN
- 9788833923864
- Editore
- Bollati Boringhieri
- Collana
- Saggi. Scienze
- Formato
- Libro in brossura
- Anno
- 2013
- Pagine
- 291
Disponibile
29,00 €
"Qual è il candidato che il popolo ha scelto?" La domanda è semplice, ma la risposta non lo è per niente. Fin dalla nascita della democrazia, nella Grecia di 2500 anni fa, ci si è accorti che la distribuzione dei voti e dei delegati di un'assemblea è un problema matematico che in molti casi può portare a soluzioni paradossali. Gestire in maniera "assolutamente giusta" il meccanismo di voto è stato per secoli - e lo è ancora - un problema senza soluzione. Da Platone a Plinio, da Llull a Laplace, Condorcet, Jefferson, von Neumann, Arrow: in tutte le epoche e in ogni tipo di democrazia le menti più raffinate si sono dedicate a risolvere il problema di stabilire in maniera corretta "chi ha vinto"; ma la soluzione si è dimostrata elusiva. Che si scelga il proporzionale puro, il maggioritario con correzioni o qualche altro sistema tra i moltissimi ormai inventati, c'è sempre modo di distorcere il risultato o di arrivare a un vero e proprio paradosso inaggirabile, dove non vince nessuno, vincono tutti o è di fatto impossibile distribuire i seggi equamente. Attraverso esempi storici e spiegazioni matematiche - rese con invidiabile chiarezza e senza bisogno di usare formule -, George Szpiro illustra la storia di questo rompicapo, i personaggi che hanno preso parte al dibattito e le raffinate insidie della matematica della democrazia. D'altra parte è dimostrato che i paradossi sono inevitabili e che ogni meccanismo di voto presenta delle incongruenze e può essere manipolato...
Maggiori Informazioni
Autore | Szpiro George G.;Giacone L. |
---|---|
Editore | Bollati Boringhieri |
Anno | 2013 |
Tipologia | Libro |
Collana | Saggi. Scienze |
Lingua | Italiano |
Larghezza | 0 |
Stato editoriale | In Commercio |
Questo libro è anche in: