Get ready for a dazzling summer with our new arrivals
heroicons/outline/phone Servizio Clienti 06.92959541 heroicons/outline/truck Spedizione gratuita sopra i 29€

Incompleteness and logic

ISBN/EAN
9791259948465
Editore
Aracne (Genzano di Roma)
Formato
Libro in brossura
Anno
2022
Pagine
204

Disponibile

15,00 €

For Gödel’s theorems there are truths that escape axiomatic systems. This phenomenon in mathematical logic is called incompleteness. This book deals precisely with mathematical truths that axiomatic systems fail to capture. In the first chapters the incompleteness of Peano’s arithmetic is addressed, Gödel’s sentences cannot be captured by the principles of Peano’s arithmetic. Thus in this book it is possible to see how Gödel was able to construct an arithmetic sentence that says about itself: I am unprovable. In addition to Gödel’s sentences, there are other truths such as Goodstein’s theorem and the finite extension of Ramsey’s theorem which Peano’s axioms fail to prove. In the second part of the book we will see that in modern set theory there is a sentence, namely the Continuum Hypothesis, that Zermelo-Fraenkel axiomatic system fails to prove. For a result of Gödel (1938) and a result of Cohen (1963) the Continuum Hypothesis is independent of the axioms of Zermelo-Fraenkel. These axioms fail to prove the Continuum Hypothesis. In the last part of the book we will see the attempt of Hugh Woodin to prove the Continuum Hypothesis that is called Woodin’s program.

Maggiori Informazioni

Autore Gambetta Emanuele
Editore Aracne (Genzano di Roma)
Anno 2022
Tipologia Libro
Lingua Italiano
Larghezza 0
Stato editoriale In Commercio
Questo libro è anche in: