Get ready for a dazzling summer with our new arrivals
heroicons/outline/phone Servizio Clienti 06.92959541 heroicons/outline/truck Spedizione gratuita sopra i 29€

An Unconstrained Minimization Method For Solving Low Rank Sdp Relaxations Of The Ma Cut Problem

ISBN/EAN
9788854812765
Editore
Aracne
Collana
Dipartimento informatica e sistemistica
Formato
Brossura
Anno
2007
Pagine
48

Disponibile

11,00 €
In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of the max cut problem. Using the Gramian representation of a positive semide¯nite matrix, the LRSDP problem is transformed into the non-convex nonlinear programming problem of minimizing a quadratic functionwith quadratic equality constraints. First, we establish some new relationships among these two formulations and we give necessary and sufficient conditions of global optimality. Then we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm for the solution of the LRSDP problem. Finally, we test our code on an extended set of instances of the max cut problem and we report comparisons with other existing codes.

Maggiori Informazioni

Autore Grippo Luigi; Palagi Laura; Piccialli Veronica
Editore Aracne
Anno 2007
Tipologia Libro
Collana Dipartimento informatica e sistemistica
Num. Collana 0
Lingua Inglese
Disponibilità Disponibilità: 3-5 gg